

	Plant	Fungus
Arbuscular mycorr.	All taxa	Glomeromycetes
Ectomycorrhizae	Angiosperms, Gymnosperms	Basidiomycetes, Ascom.
Ectendomycorrhizae	Pinaceae	Basidiom., Ascom.
Arbutoids	Ericales	Basidiom.
Monotropoids	Monotropoids	Basidiom.
Ericoids	Ericales, Briophytes	Ascom.
Orchidoids	Orchidaceae	Basidiom.

Many mycorrhizal types, and sub-types

Truffles:

From ancient times to the first scientific studies

- **Pliny the Elder** (70 b.c.) thinks they are soil modifications.
- Ray (1700) observes spores inside truffles
- **De Borchii** (1780) demonstrates that spores produce mycelium
- Vittorio Pico (1787): truffles are different. First steps into mycorrhizal mycology.

1885: from symbiosis to mutualism

Albert Bernhard Frank: **«Mycorrhiza» = fungus + root tip):**

The fungus uptakes water and salts from the soil and transfer them to the plant.

The plant gives the fungus root exudates.

Change in time										
Morfotipi	Μ	Α	Μ	G	L	Α	S	0	Ν	D
Cortinarius anomalus	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	
Lactarius quietus	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	
Byssocorticium atrovirens	\checkmark	\checkmark	\checkmark	\checkmark						
Cenococcum geophilum				\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
Tomentella sp.				\checkmark	\checkmark			\checkmark	\checkmark	
Piloderma sp.				\checkmark						
Hebeloma sp.										\checkmark
Laccaria amethystina										\checkmark
Russula nigricans										\checkmark
Clavulina cristata	\checkmark	\checkmark	\checkmark							\checkmark
Boletus sp.		\checkmark	\checkmark	\checkmark	\checkmark					\checkmark

A sampling community	g meth y at pl	iod to ant lev	descri vel	ibe the	e Norw	vay spi	ruce e	ctomy	corrhiz
I MONTECC	NUIO &	LSCA		т					
L. MONTECC	LHIO &	L. SCA	ITOLI	N					
Dipartimento Terri	torio e Sis	temi Agro-	Forestali,	Università	degli Studi	i di Padove	a, Italy		
reduced from 1	0 to 4, 7,	5 and 9 in	Ma Pa G	a and	probably k	ananna af	4	antion of	A
Table VI. EM rela column: observed v	tive abundar s. expected I	nces (RA) in RA, Chi-squa	four trees in $re = 29.6400$	Pa site, consi 1, df = 1, <i>P</i> <	dering 10 tip: 0.001805. Ir	s and 6 tips of evidence: (C	bserved in each $(D - E)^2/E$ value	ch root core es > 1.6395	the gradient of the second se
Table VI. EM rela column: observed v	tive abundants, expected I	nces (RA) in RA, Chi-squar 10 tips/ro	four trees in re = 29.6400 ot core (<i>E</i>)	a and Pa site, consi 1, df = 1, <i>P</i> <	dering 10 tip: 0.001805. Ir	s and 6 tips of evidence: (C 6 tips/roo	bserved in er $(D - E)^2/E$ value of core (O)	ich root core es > 1.6395	the gy. . In the right $\Theta = (=k)$.
Table VI. EM rela column: observed v	tive abundants. expected I	nces (RA) in RA, Chi-squar 10 tips/ro	four trees in $re = 29.6400$ ot core (<i>E</i>)	Pa site, consi 1, df = 1, <i>P</i> < T	dering 10 tip 0.001805. Ir	s and 6 tips of a evidence: (C 6 tips/roo	bbserved in each $(O - E)^2/E$ values of the core (O)	ich root com es > 1.6395	the right O(=k).
Table VI. EM rela column: observed v	trive abundants. expected I	nces (RA) in RA, Chi-squar 10 tips/ro 2	four trees in $re = 29.6400$ ot core (E)	Pa site, consi 1, df = 1, <i>P</i> < T 4	dering 10 tips 0.001805. Ir ree 1	s and 6 tips of a evidence: (C 6 tips/roo	their distribution beserved in er $D - E)^2/E$ value of core (O) 3	uch root core es > 1.6395	the gy. a. In the right O(=k). $O(-E)^2/E$
Table VI. EM rela column: observed v	tive abundan s. expected I 1 10,706	ces (RA) in RA, Chi-squar 10 tips/ro 2 16.972	four trees in re = 29.6400: ot core (E) 3 2.777	Pa site, consi 1, df = 1, P < T 4 8.164	dering 10 tip 0.001805. Ir ree 1 11.944	s and 6 tips of a evidence: (C 6 tips/roo 2 14.930	their distribution $(D - E)^2/E$ value of core (O) 3 5.000	4 7.777	the gy. the fight $\partial (=k)$. $(O - E)^2/E$ 0.018
Table VI. EM reli column: observed v A. muscaria A. byssoides	tive abundar s. expected 1 1 10.706 18.964	2 16.972 0.000	four trees in re = 29.6400 ot core (E) 3 2.777 1.759	Pa site, consi 1, df = 1, P < T 4 8.164 0.925	ree 1 11.944 19.166	s and 6 tips of a evidence: (C 6 tips/roc 2 14.930 0.000	their distri- beserved in er $(D - E)^2/E$ value of core (O) 3 5.000 2.083	4 7.777 1.388	tregy. In the right O(=k). $(O - E)^2/E$ 0.018 0.231
Table VI. EM relt column: observed v A. muscaria A. byssoides C. geophilum	tive abundar s. expected 1 1 10,706 18,964 54,108	2 16.972 0.000 41.382	four trees in re = 29.6400 ot core (E) 3 2.777 1.759 35.300	Pa site, consi 1, df = 1, P < T 4 8.164 0.925 34.943	ree 1 11.944 19.166 56.041	2 14.930 3.3750	their distribution between the end of the	4 7.777 1.388 52.847	$(O - E)^{2}/E$ 0.018 0.231 9.172
Table VI. EM reli column: observed v A. muscaria A. bysoides C. geophilum E. granulatus	1 10.706 18.964 54.108 0.520	2 16.972 0.000 41.382 1.521	four trees in re = 29.6400: ot core (E) 3 2.777 1.759 35.300 7.083	Pa site, consi 1, df = 1, P < T 4 8,164 0,925 34,943 22,184	ree 1 11.944 19.166 56.041 0.694	2 14.930 0.000 33.750 1.666	anelf distribution observed in er 0 0 - E) ² /E value st core (O) 0 3 5.000 2.083 42.777 6.250 0	4 7.777 1.388 52.847 1.527	the gy. the fight $O(=k)$. $(O-E)^2/E$ 0.018 0.231 9.172 19.233
Table VI. EM reli column: observed v A. muscaria A. hyssoides C. geophilum E. granulatus H. veluipes	1 10.706 18.964 54.108 0.520 0.000	2 16.972 0.000 41.382 1.521 6.967	four trees in re = 29.6400. ot core (E) 3 2.777 1.759 35.300 7.083 21.180	Pa site, consi l, df = 1, P < T 4 8.164 0.925 34.943 22.184 3.042	ree 1 11.944 19.166 56.041 0.694 0.000	2 14.930 0.000 33.750 1.666 2.777	a core (O) 3 5.000 2.083 42.777 6.250 5.555	4 7.777 1.388 52.847 1.527 3.472	$(O - E)^{2}/E$ 0.018 0.231 9.172 19.233 0.060
Table VI. EM reli column: observed v A. muscaria A. byssoides G. geophilum E. granulatus H. valaipes H. rufesceu	tive abundai s. expected I 1 10.706 18.964 54.108 0.520 0.000 0.595	2 16.972 0.000 41.382 1.521 6.967 4.768	four trees in re = 29.6400 ot core (E) 3 2.777 1.759 35.300 7.083 21.180 2.546	Pa site, consi 1, df = 1, P < T 4 8.164 0.925 34.943 22.184 3.042 3.349	ree 1 11.944 19.166 56.041 0.694 0.000 0.000	2 14,930 0,000 33,750 1.666 2,777 4.861	their distribution between the distribution of the distribution	4 7.777 1.388 52.847 1.527 3.472 3.055	Legy. 2. In the right $O_{(=k)}$. $O_{(=k)}$. $O_{(=k)}^{-1}/E$
Table VI. EM reli column: observed v A. muscaria A. byssoides C. geophilum E. granulatus H. relations H. relations H. relations	tive abundar s. expected 1 10,706 18,964 54,108 0,520 0,000 0,595 0,000	2 16.972 0.000 41.382 1.521 6.967 4.768 0.000	3 2.777 1.759 35.300 7.083 2.546 2.546	Pa site, consi 1, df = 1, P < T 4 8,164 0,925 34,943 22,184 3,042 3,349 4,117	ree 1 11.944 19.166 56.041 0.694 0.000 0.000 0.000 0.000	2 14.930 0.000 33.750 1.666 2.777 4.861 0.000	their distribution between the distribution of the distribution	4 7.777 1.388 52.847 1.527 3.472 3.055 5.000	$(O - E)^{2}/E$ $(O - E)^{2}/E$ $(O - E)^{2}/E$ 0.018 0.231 9.172 19.233 0.060 0.025 0.189
A. muscaria A. muscaria A. bysoides C. geophium E. granulatus H. viduitys H. ruleicous H. edicacoublus i. appendiculata	1 10.706 18.964 54.108 0.520 0.000 0.595 0.000 3.645 2.011	2 16.972 0.000 41.382 1.521 6.967 4.768 0.000 1.388 0.000 1.388	four trees in re = 29,6400. ot core (E) 3 2.777 1.759 35.300 7.083 21.180 2.546 2.546 3.842 2.964	a and Pa site, consi 1, df = 1, P < T 4 8.164 0.925 34.943 22.184 3.042 3.349 4.117 0.000 5.157	ree 1 1.944 19.166 56.041 0.694 0.000 0.000 0.000 3.125 0.611	2 14,930 0.000 33,750 1.666 2.777 4.861 0.000 2.083 4.907	there distri- baserved in ex- $p^{-}E^{2}/E$ value t core (O) 3 5.000 2.083 42.777 6.250 5.555 2.777 2.777 3.472 2.777	4 7.777 1.388 52.847 1.527 3.472 3.055 5.000 0.000	Legy. . In the right $0 \ (=k)$. . $(O - E)^2/E$ 0.018 0.231 9.172 19.233 0.060 0.025 0.189 0.000 0.025
A. muscaria A. byssoides G. geophilum E. granulatus H. reducipes H. niveccoalbus I. appendiculata I. appendiculata L. badiosanguineus	1 10.706 18.964 54.108 0.520 0.000 0.595 0.000 0.645 1.041 0.500	nces (RA) in RA, Chi-squar 10 tips/ro 2 16.972 0.000 41.822 1.521 6.967 4.768 0.000 1.388 2.979	four trees in re = 29.6400: ot core (E) 3 2.777 1.759 35.300 7.083 21.180 2.546 2.546 3.842 3.888 2.546	A and Pa site, consi 1, df = 1, P < T 4 8.164 0.925 34.943 22.184 3.042 3.042 3.349 4.117 0.000 5.456 0.000	ree 1 1.944 19.166 56.041 0.604 0.000 0.00	2 14.930 0.000 33.750 1.666 2.777 4.861 0.000 2.083 4.375 1.200	beerved in ei 0 - E) ² /E valu et core (O) 3 5.000 2.083 42.777 6.250 5.555 2.777 2.777 3.472 2.777 3.472	4 7.777 1.388 52.847 1.527 3.472 3.055 5.000 0.000 4.444	$(O - E)^{3/E}$ 0.018 0.025 0.000 0.025 0.000 0.187 0.000
A. muscaria A. muscaria A. bysoides C. geophilum E. granulatus H. valuips H. rafaceou H. objectorolbus I. appendiculata I. badiosanguineus L. daterrimus	1 10.706 18.964 54.108 0.520 0.000 0.595 0.000 0.595 1.041 0.520 4.166	nces (RA) in RA, Chi-squar 10 tips/ro 2 16.972 0.000 41.382 1.521 6.967 4.768 0.000 1.388 2.979 0.925 6.530	four trees in ite = 29,6400, ot core (E) 3 2.777 1.759 35,300 7.083 21.180 2.546 2.546 2.546 3.848 2.546 3.888 2.546 4.398	A and Pa site, consi 1, df = 1, P < T 4 8.164 0.925 34.943 22.184 3.349 4.117 0.000 5.456 0.000 2.323	ree 1 11.944 19.166 56.041 0.694 0.000 0.000 0.000 0.000 0.000 0.000 0.694 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69	2 14.930 0.000 3.750 1.666 2.775 4.861 0.000 2.083 4.375 1.388	bserved in ei 0 − E ³ /E valu et core (O) 3 5.000 2.083 42.777 6.250 5.555 2.777 2.777 3.472 2.777 1.388 10.933	4 7.777 1.388 52.847 1.527 3.472 3.055 5.000 0.000 4.444 0.000 2.0°	$\begin{array}{c} \text{c. In the right} \\ 0 \ (=k), \\ 0 $

Only when a fruitbody is visible, it's easy to detect its mycorrhiza

An overview of oak decline in the Mediterranean region

Oak decline show symptoms common to all forest trees decline

«Forest» decline is documented in Europe since the 1940s.

Since the eighties it has been reported also on Oak species (or was it a matter of knowlege and experience in survey?).

Symptoms are mainly associated to soil-related physiological stressors (drought, compaction, fertility, assolation, root up-take.

1)Root uptake deficiencies.

2)Canopy transparency increases due to yellowing, wilting, fall of leaves.3) Annual internodes shorten.

4)Epicormic twigs appear along the trunk, downwards to the collar.

5)Human-assisted practices speed up the process: mainly intensive sylviculture, pasture, land-reclamation.

6)Endophytic fungi commonly present in all heatly trees turn to parasitism (*i.e. Biscogniauxia, Hypoxylon, Diplodia, Collybia*).

7)Known pests and pathogens infect declining trees causing root rots, bark cracks and wood decay (*i.e. Phytophthora, Armillaria, Ganoderma, Phellinus*)

8)Fall and substitution by «stressors-tolerant» genotypes or species, not necessarily trees (i.e. Holm- and Cork oak with *Cistus*).

Sweet Chestnut Ink Disease

cause, symptoms and control

What CID is?

A lethal disease caused by *Phytophthora* (*cambivora* and *cinnamomi*), a soil-borne parasite.

Compacted soils, poor drainage and temporary films of water allow the parasite to move to the root tips by means of its **flagellated spores** (rotating like a propeller).

Curative Injection 21 days after infection. End of trial 50 days after injection (= 71).

Preventative (bar=2cm) Injection 27 days before infection. End of trial 50 days after infection (=77).

<section-header><image><image><image><image><image><image>

Adjustment of the growing methods:

- ≻ Disinfection of substrates, pots, seed.
- Composition e pH of the soils
- Decrease fertilizzation
- ➢ Avoid fungides
- > Avoid herbicides
- Decrease watering

Survey, survey, survey

- Control
- T. harzianum
- *T. harzianum* + AM dose a
- AM dose a
- AM dose 2a

