Planting Trees And Aftercare

• Dr G. Percival

- Bartlett Tree Research Laboratory
- Reading University, UK

The Extent of the Problem

Planted Jan 2019: Assessed July 2019

рН	8.2	Alkaline
Ν	42.0	Low
Р	88.0	High
K	464.0	High
Mg	402.3	Low
Compaction	1.80	High
Soil Respiration	0.2	V. Low
Leaf chlorophyll content	-	-
Photosynthetic efficiency	-	-
Mycorrhiza	-	-

Out of 220 trees planted 198 were dead?

Planting Project: London

Tree Planting Detail

Roots too Deep in a B&B Root Ball

Remove soil from on top of ball so you can see roots emerging from the trunk

 Cut roots that circle, those that are kinked, or those that cross over major roots

Orient roots in a

radial fashion

Soil soaked to avoid compaction

One year warranties: look better and grow more in 1st season if planted <u>IMPROPERLY</u>

Control

Disturbed

Control: Right out of the 70 Litre Container, Planted Into the Ground

Circulating root to root

Circulating root to stem

Root collar depth is a chronic problem

What lurks beneath?

Root Collar Excavation

Root collar must be located at planting

Deep Planting Study

Cherries and Red maples, planted 2008, survival data from 2015

Tree survival after 2 seasons was less in deep-planted cherries

Aftercare: Mulching

One of the most simplest systems of promoting tree vitality and managing soil borne diseases.

Mulch

One of the Best treatment for any tree

- Apply to the dripline if possible
- 5 to 10cm of wood chips
 No fabric, no grass, no matting, no fine woods, no diseased chips (*Verticillium, Armillaria*)

Joe Murray Blue Ridge Community College Weyer's Cave, VA

Mulch

Mulch + Fert

5.54

Trees (Ash) in with shared mulched areas grew more than twice as fast as trees with mulched rings

Mulch rings

Shared mulch areas

Two years after planting
Pure or Single Species Mulch

Mulch

Wood chip

Smart Mulch Food Biomass Control

Dispelling myths

- Mulches made from wood chips DO NOT acidify soils.
- Diseased mulches rarely transfer pathogens to healthy hosts.
- Mulches from deciduous trees do not need composting fresh mulches are fine.
- Mulches "lock up" N and C. No scientific evidence to support this.
- However, wood chip buried into soil CAN lock up C and N....in the short term!

Soil Amendments Mycorrhizal Fungi

The roots of most trees growing in a woodland are generally infected by beneficial fungi known as mycorrhizal fungi. Benefits from this type of association include;

Striking growth responses of tree seedlings grown in poor soils or under drought conditions.

Increased root vigour.

Resistance to Phytophthora root rot.

Ability to grow on soils high in heavy metals.

Independent research on commercially available Mycorrhiza has found NO consistent positive benefits on nursery or newly transplanted trees. Maybe helpful on declining mature trees

Trees and Mycorrhizal Inoculations

Appleton et al (2003) Journal Of Arboricuture. 29(2) 107-111. Carlson et al (2000) Proceedings SNA Research Conference. 45:405-406. Gilman (2001) Journal of Arboricuture. 27:30-38. Support the conclusions that mycorrhiza have little effect on promoting transplant survival and growth of trees.

Mycorrhiza

Natural releases of sugar into soils by roots increased growth and mineralization by soil fungal mycorrhiza communities (DeBoois & Jansen, 1975).

Sugar/Mycorrhiza Interaction

• Use of sugars (soil drench) and influence on mycorrhizal association

Control

Sucrose

Glucose

Carbohydrate loading

es based fertilise

Granular carbohydrate fertiliser

2.5% solution	Root Sugar Concentration (g/100g DW)		
	English Oak	Poplar	Beech
Control	1.8	2.4	1.2
Molasses	2.8	3.2	1.9
Sucrose	2.5	3.8	2.1
Glucose	2.6	3.6	1.7
Fructose	2.9	3.6	1.5
Raffinose	3.0	3.5	1.9

Beech

English oak

• Percival G.C. and K Sacre (2014). The influence of soluble carbohydrates, slowrelease nitrogen and a plant growth regulator on transplant survival of trees. *Arboricultural Journal*. DOI: 10.1080/03071375.2014.943559.

FORMULATION OF BIOSTIMULANTS

"Eye of toad, ear of bat and that horrible lumpy bit in the bottom of a Pot noodle"

Biostimulants to enhance stress tolerance

PLANTS AND CROPS

lm

Penconazole (foliar spray)

Sugar Cal: Sorbitol/Mannitol/Chelated Calcium Acetate Horti-Kelp: Bioactives (Seaweed Extracts/Amino Acids/ Vitamins

pplied at MRR, generally

- IntraCell: Glycine Betaine
- Topas: Penconazole
- Phusion: Potassium Phosphite
- Liquid Chitosan: Chitosan
- Alpha Mat: Salicylic Acid + Surfactant

CHITOSAN GROWTH PROMOTER AND HEALTH FOOD 250ml

applied as soil drench except

All products a

July 2018: One of the Hottest on Record

Salinity

And the Winner was????

No "real" difference between controls and remaining treatments

Alpha Mat

BioPlex on Transplants

What is Biochar?

A purified form of charcoal.

- When added to soil it:
- Increases CEC
- Improves water retention
- Improves fertiliser effectiveness

Benefits are now realised.

© Pete Brownsort/UK Biochar Research Centre ,University of Edinburgh

Acts as a haven for mycorrhiza

Slides courtesy of J MacPhail

Mycorrhizae trapping nematodes with their filamentous hyphae

Slides courtesy of J MacPhail

Recent Research from the USA

[Scharenbroch, B.C., E. Meza, M. Catania, and K. Fite. 2013. Biochar and biosolids increase tree growth and improve soil quality for urban landscapes. Journal of Environmental Quality. doi:10.2134/jeq2013.04.0124

Root scans from *Acer saccharum* in sand, silt loam, and compact clay

Cherry Drought Trial

- Irrigation was removed from *Prunus avium* to monitor their drought response
- Above: Control with no soil amendment
- Below: Treated with enriched biochar

BTRL trial: simulated planting pits of approx. 4.0 cu metre. – oak, maple

MGB 'Regal Prince' oak 'Pattern Perfect' maple

Biochar Gravel Mulch

Biochar Gravel Mulch

Month 18 after treatment

Control (first growing season) Biochar

Biochar HW

Biochar SW

Biochar + N:P:K

Biochar HW

SOIL AMENDMENTS (5% by Volume)

- 1. Biochar (soft/hard wood, rice)
- 2. Coir: waste product (coconut husks)
- **3. Hydroleca: Pulverised clay product**
- 4. Terracottam (CRF/Polymer/Volcanic Rock)

With and without mulch

Biochar

Treatments:

Biochar (softwood) Biochar (hardwood) Biochar (rice) Control (no biochar)

Each biochar was then "marinated" for 24 hours in either

Water Potassium phosphite (10 ml per litre) Molasses (10 ml per litre) Liquid BOOST (10 ml per litre)

i.e. Biochar (softwood) + Water Biochar (softwood) + Potassium phosphite Biochar (softwood) + Molasses Biochar (softwood) + Liquid BOOST

Trees then had 50% of their root system removed

Trees then had 50% of their root system removed

SOIL AMENDMENTS (YEAR 1)

Biochar + Mulch

SOIL AMENDMENTS (YEAR 3)

Biochar + Mulch

SOIL AMENDMENTS (YEAR 2)

Biochar

Control

Root growth 12 months later at 45, 90 and 135 cm away from cut roots (Conifer)

Biochar	Treatment	45 cm	90 cm	135 cm	
		Root growth g/cm ³			
Control	Water	0.01783	0.00782	0.00153	
Control	Phosphite	0.02372	0.00858	0.00211	
Control	Molasses	0.03607	0.01194	0.00299	
Control	BOOST	0.03189	0.0117	0.0029	
Softwood	Water	0.03416	0.01367	0.00339	
Softwood	Phosphite	0.03617	0.01237	0.00313	
Softwood	Molasses	0.04833	0.02085	0.00452	
Softwood	BOOST	0.04676	0.01866	0.00458	
Hardwood	Water	0.0351	0.01424	0.00415	
Hardwood	Phosphite	0.04448	0.01682	0.00406	
Hardwood	Molasses	0.06273	0.02186	0.00544	
Hardwood	BOOST	0.06529	0.02301	0.00444	
Rice	Water	0.02808	0.01033	0.00238	
Rice	Phosphite	0.04105	0.01508	0.00406	
Rice	Molasses	0.04833	0.01961	0.0052	
Rice	BOOST	0.04596	0.02086	0.00538	

Influence of biochar treatments on tree vitality (Cherry)

Biochar	Treatment	Crown Volume	SPAD	PI
Control	Water	0.86	34.5	2.4
Control	Phosphite	1.00	37.8	3.0
Control	Molasses	1.28	36.8	3.0
Control	BOOST	1.40	41.9	4.5
Softwood	Water	1.18	39.0	3.3
Softwood	Phosphite	1.25	44.1	3.4
Softwood	Molasses	1.45	44.8	3.9
Softwood	BOOST	1.56	52.4	5.6
Hardwood	Water	1.25	42.3	3.7
Hardwood	Phosphite	1.26	42.0	3.6
Hardwood	Molasses	1.59	44.5	4.6
Hardwood	BOOST	1.66	53.1	6.2
Rice	Water	1.14	41.1	3.3
Rice	Phosphite	1.12	43.7	3.5
Rice	Molasses	1.39	45.0	3.9
Rice	BOOST	1.47	48.8	5.5

Decling tree

Soil Conditioning – air spading of the soil

Working in organic matter,

Fertilizer and Mycorrhiza

One Year into Recovery

Two years after treatment

3 years after treatment

